

Contrasting Effects of Nateglinide and Rosiglitazone on Insulin Secretion and Phospholipase C Activation

Walter S. Zawalich, Gregory Tesz, and Kathleen C. Zawalich

When stimulated with 6 mmol/L glucose, a minimal, transient insulin secretory response was observed from perfused rat islets. The inclusion of 5 μ mol/L nateglinide significantly amplified release. Elevating glucose to 8 or 10 mmol/L resulted in an increasing insulin secretory response that was again markedly potentiated by the further inclusion of nateglinide. The calcium channel antagonist, nitrendipine, abolished secretion to 8 mmol/L glucose plus nateglinide. Unlike nateglinide, rosiglitazone (5 μ mol/L), troglitazone (1 to 10 μ mol/L), or darglitazone (10 μ mol/L), 3 peroxisome proliferator-activated receptor gamma (PPAR γ) agonists, were without any acute stimulatory effect on insulin release in the simultaneous presence of 6 to 10 mmol/L glucose. Glucose (8 to 10 mmol/L) significantly increased inositol phosphate accumulation. Nateglinide amplified this response. Nitrendipine reduced inositol phosphate (IP) accumulation in response to the combination of 8 mmol/L glucose plus 5 μ mol/L nateglinide. Rosiglitazone had no effect on IP accumulation. These results confirm the efficacy of nateglinide as a potent glucose-dependent insulin secretagogue that exerts its stimulatory effect, at least in part, through the activation of phospholipase C (PLC). No acute potentiating effect of rosiglitazone on either insulin secretion or IP accumulation could be detected in isolated rat islets.

© 2003 Elsevier Inc. All rights reserved.

IN AN ATTEMPT to augment the insufficient glucose-induced insulin secretory response of the pancreatic β cell that characterizes type 2 diabetes, a variety of pharmacologic tools have been utilized. Initially, sulfonylureas were used for this purpose.^{1,2} A newer class of shorter-acting insulin secretagogues has been developed to provide an added impetus to insulin release from a decompensating β cell.³⁻⁵ The glinide class of compounds, and, in particular, nateglinide, has achieved clinical significance in this regard. Most recently,⁶ it has been reported that rosiglitazone, a member of the thiazolidinedione class of drugs that act as peripheral tissue insulin sensitizers,⁷ also stimulates insulin release from the perfused rat pancreas. This previously unreported action of rosiglitazone has been suggested to play an important role in improving glucose tolerance. In most clinical studies, however, this action has not been routinely observed, and insulin levels usually decline during therapy with the glitazone class of compounds.⁸⁻¹⁰

Our interest in the factors that control the secretion of insulin from the β cell led us to perform comparative studies using nateglinide or rosiglitazone to augment glucose-induced release from isolated perfused rat islets. Because the activation of phospholipase C (PLC) and the attendant generation of a host of second messenger molecules appear to play an integral role in the regulation of glucose-induced secretion,¹¹⁻¹⁴ we explored the potential impact of these compounds on information flow in this signal transduction pathway. Our findings demonstrate that nateglinide evokes parallel increments in both glucose-induced PLC activation and insulin release from rat islets. Under conditions where marked acute insulin stimulatory effects of nateglinide were observed and in contrast to a recent study,⁶ no effect on β -cell secretion was detected in comparable experiments with rosiglitazone.

MATERIALS AND METHODS

Islet Isolation

The detailed methodologies used to assess insulin output from collagenase-isolated islets have been previously described.¹¹ Male Sprague-Dawley rats (body weights at time of study 350 to 475 g) were purchased from Charles River (Wilmington, MA). All animals were

treated in a manner that complied with the National Institutes of Health (NIH) Guidelines for the Care and Use of Laboratory Animals (NIH publication no. 85-23, revised 1985). The animals were fed ad libitum. After Nembutal (pentobarbital sodium; 50 mg/kg; Abbott, North Chicago, IL)-induced anesthesia islets were isolated by collagenase digestion and handpicked using a glass loop pipette under a stereo microscope. They were free of visible exocrine contamination.

Perfusion Studies

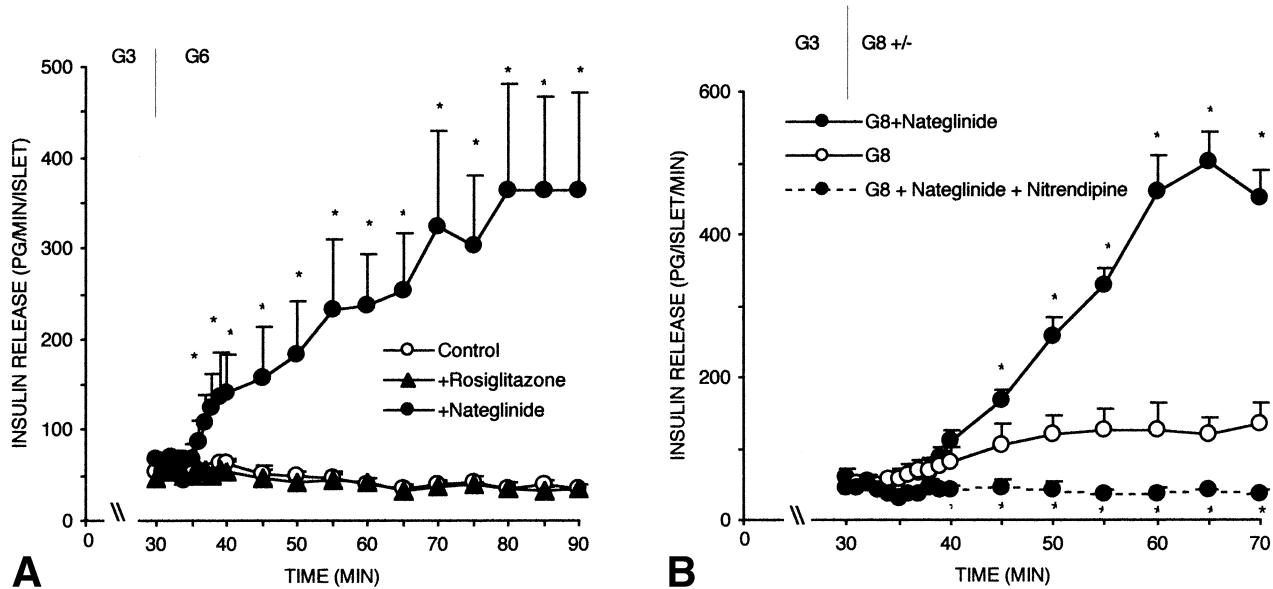
Groups of 14 to 18 isolated islets were loaded onto nylon filters (Sefar America, Briarcliff Manor, NY) and perfused in a Krebs-Ringer Bicarbonate (KRB) buffer at a flow rate of 1 mL/minute for 30 minutes in 3 mmol/L glucose to establish basal and stable insulin secretory rates. After this 30-minute stabilization period, they were then perfused with the appropriate compounds as indicated in the figure legends and Results section. Perfusion solutions were gassed with 95% O₂/5% CO₂ and maintained at 37°C. Insulin released into the medium was measured by radioimmunoassay (RIA).¹⁵

Islet Labeling for Inositol Phosphate Studies

After isolation, groups of 18 to 26 islets were loaded onto nylon filters, placed in a small glass vial, and incubated for 3 hours in a myo-[2-H³]-inositol-containing KRB solution made up as follows: 10 μ Ci myo-[2-H³]-inositol (specific activity, 16 to 23 Ci/mmol/L) were placed in a 10 mm \times 75 mm culture tube. To this aliquot of tracer 250 μ L of warmed (to 37°C) and oxygenated (KRB) medium supplemented with 5.0 mmol/L glucose were added. After mixing, 240 μ L of this solution was gently added to the vial with islets. The vials were capped with a rubber stopper. A 20-gauge needle was inserted through the stopper to act as an outlet port and another 20-gauge needle connected to a 95% O₂/5% CO₂ gas tank inserted through the stopper as well. The

From the School of Nursing, Yale University, New Haven, CT.

Submitted December 3, 2002; accepted June 9, 2003.


Supported by Grant No. 41230 from the National Institutes of Health (NIH) and by the American Diabetes Association.

Address reprint requests to Walter S. Zawalich, PhD, Yale University School of Nursing, 100 Church St South, PO Box 9740, New Haven, CT 06536-0740.

© 2003 Elsevier Inc. All rights reserved.

0026-0495/03/5211-0008\$30.00/0

doi:10.1016/S0026-0495(03)00317-2

Fig 1. Insulin secretion from isolated perfused rat islets. Groups of 14 to 18 islets were isolated and perfused. For the initial 30 minutes, the islets were maintained with 3 mmol/L glucose (G3) to establish basal and stable insulin secretory rates. (A) They were then stimulated (indicated by the vertical line) for 60 minutes with 6 mmol/L glucose (G6) alone (○), 6 mmol/L glucose plus 5 μ mol/L nateglinide (●, solid line), or 6 mmol/L glucose plus 5 μ mol/L rosiglitazone (▲). (B) Islets were stimulated for 40 minutes with 8 mmol/L glucose (G8) alone (○), 8 mmol/L glucose plus 5 μ mol/L nateglinide (●, solid line), or 8 mmol/L glucose plus 5 μ mol/L nateglinide plus 1 μ mol/L nitrendipine (●, dashed line). Mean values \pm SE of at least 3 experiments are given. This and subsequent perfusion figures have not been corrected for the dead space in the perfusion apparatus, 2.5 mL or 2.5 minutes with a flow rate of 1 mL/min. Note change in insulin release scale for the different graphs. *Indicates a significant difference between the experimental group and control release in response to glucose alone.

atmosphere above the islets was gently aerated with this gas mixture for 5 seconds and incubated at 37°C. The vials were again gently oxygenated after 90 minutes. After the labeling period, the islets still on nylon filters were washed with 5 mL fresh KRB.

Inositol Phosphate Measurements

After washing, the islets on nylon filters were placed in small glass vials. Added gently to the vial was 400 μ L KRB supplemented with 10 mmol/L LiCl to prevent inositol phosphate (IP) degradation and the appropriate compounds as indicated. The vials were capped and gently gassed for 5 seconds with 95% O₂/5% CO₂ and incubated at 37°C. After 30 minutes, the generation of IPs was stopped by adding 400 μ L 20% perchloric acid. Total IPs formed were then measured using Dowex columns as described previously.^{16,17}

Reagents

Hank's solution was used for the islet isolation. The perfusion medium consisted of 115 mmol/L NaCl, 5 mmol/L KCl, 2.2 mmol/L CaCl₂, 1 mmol/L MgCl₂, 24 mmol/L NaHCO₃, and 0.17 g/dL bovine serum albumin. The ¹²⁵I-labeled insulin used for the insulin assay was purchased from PerkinElmer Life Sciences (Boston, MA). The labeled myo-[2-H³]-inositol was purchased from Amersham (Arlington Heights, IL). Bovine serum albumin (RIA grade), glucose, wortmannin, and the salts used to make the Hank's solution and perfusion medium were purchased from Sigma (St Louis, MO). Rat insulin standard (lot #615-ZS-157) was the generous gift of Dr Gerald Gold, Eli Lilly (Indianapolis, IN). Collagenase (Type P) was obtained from Boehringer Mannheim Biochemicals (Indianapolis, IN). Nateglinide was the generous gift of Novartis Pharmaceuticals, Summit, NJ. Rosiglitazone was the generous gift of GlaxoSmithKline, Research Triangle Park, NC. Troglitazone was the generous gift of Sankyo, Tokyo, Japan.

Darglitazone was generously supplied by Pfizer, Groton, CT. Stock solutions (10 mmol/L) of rosiglitazone, troglitazone, or darglitazone were made up in dimethyl sulfoxide (DMSO). Equivalent amounts of DMSO (0.1%) were added to control perfusion medium.

Statistics

Statistical significance was determined using the Student's *t* test for unpaired data or analysis of variance in conjunction with the Newman-Keuls test for unpaired data. A *P* value $\leq .05$ was taken as significant. Values presented in the figures and Results represent means \pm SE of at least 3 observations.

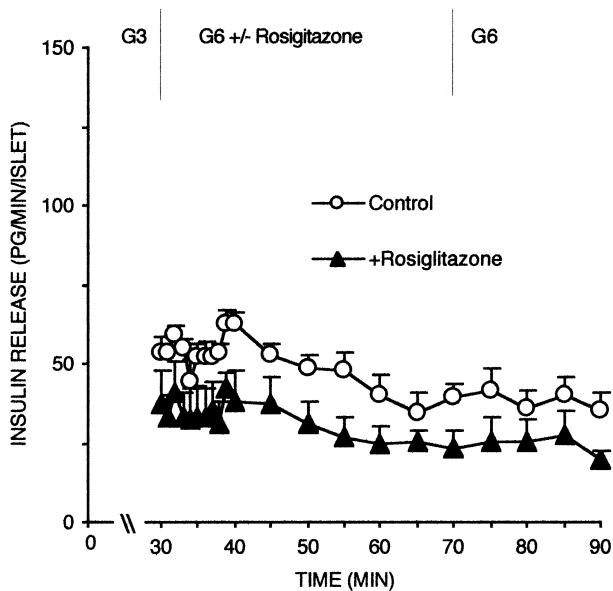
RESULTS

Effects of Nateglinide on Glucose-Induced Insulin Secretion

In the initial series of studies, we confirmed the efficacy of nateglinide in amplifying glucose-induced secretion from collagenase isolated rat islets, islets that retain a level of glucose sensitivity comparable to the perfused pancreas preparation.^{18,19} In Fig 1A, islets were stimulated with 6 mmol/L glucose alone or with the further addition of 5 μ mol/L nateglinide. When compared with prestimulatory secretion rates in the presence of 3 mmol/L glucose, a small, transient and barely measurable increase in release was noted. For example, during the first 3 to 5 minutes after the onset of 6 mmol/L glucose stimulation, release rates increased from approximately 50 pg/islet/min to 63 pg/islet/min. As the perfusion progressed however, this small increment in release rapidly subsided. Release rates averaged only 35 ± 6 pg/islet/min (*n* = 4) during the final 5 minutes of the perfusion. The inclusion of 5 μ mol/L nateg-

linide changed significantly the minimal secretory response to 6 mmol/L glucose alone. Both the kinetics and the amplitude of the response to 6 mmol/L glucose was altered. For example, during the final 5 minutes of stimulation with 6 mmol/L glucose alone, release rates averaged 35 ± 6 pg/islet/min. This increased to 365 ± 106 pg/islet/min ($n = 4$) with the addition of 5 μ mol/L nateglinide.

Increasing the glucose level to 8 mmol/L resulted in a slowly increasing insulin secretory response from control islets (Fig 1B). During the final 5 minutes of a 40-minute stimulation period, a 3-fold to 4-fold increase over prestimulatory rates was observed. In the presence of 5 μ mol/L nateglinide, a maximal 3-fold potentiating effect on 8 mmol/L glucose-induced release was noted (Fig 1B).

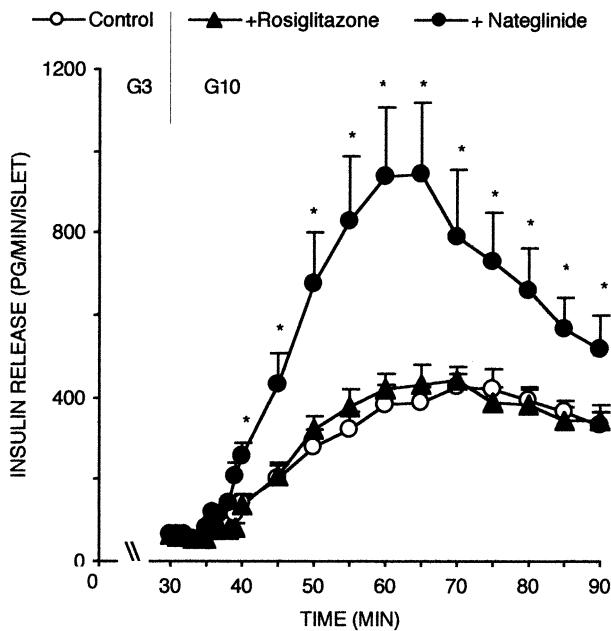

The impact of nateglinide on β -cell responses was dependent on both the influx of extracellular calcium and the glucose level. As shown in Fig 1B, the inclusion of 1 μ mol/L of the calcium channel antagonist, nifedipine, together with 8 mmol/L glucose attenuated the effect of nateglinide. In addition, nateglinide had no stimulatory effect on secretion if the glucose level was maintained at 3 mmol/L (results not shown).

Effects of Rosiglitazone on Glucose-Induced Insulin Secretion

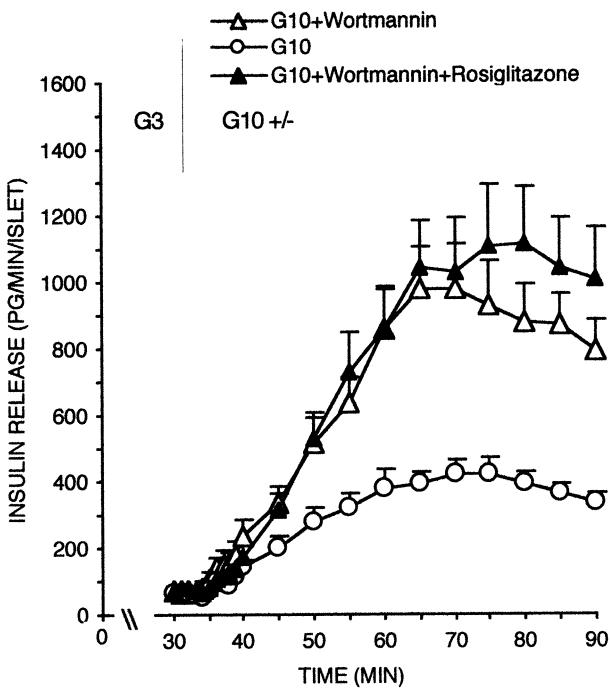
A most recent study using the perfused rat pancreas preparation reported that 0.045 to 4.5 μ mol/L rosiglitazone amplified 6 mmol/L glucose-induced insulin secretion in a dose- and time-dependent fashion.⁶ A maximum 3-fold increase was reported. As a prelude to determining the potential biochemical mechanisms involved in this reported stimulatory effect of rosiglitazone, we first attempted to repeat these observations by stimulating isolated islets with 6 mmol/L glucose plus 5 μ mol/L rosiglitazone. Two different types of protocols were used. In the first type, islets were stimulated with 6 mmol/L glucose plus 5 μ mol/L rosiglitazone for 60 minutes. These results are presented in Fig 1A. In contrast to the marked potentiating effect of nateglinide and most surprisingly considering a recent study,⁶ we could not detect any positive impact of 5 μ mol/L rosiglitazone on 6 mmol/L glucose-induced insulin secretion (Fig 1A). In the second protocol, islets were stimulated with 6 mmol/L glucose plus 5 μ mol/L rosiglitazone for 40 minutes, after which time the medium was changed to one containing only 6 mmol/L glucose. Again, when compared with prestimulatory insulin secretory rates, no positive effect of rosiglitazone on secretion was noted (Fig 2).

Effects of Wortmannin on Glucose-Induced Insulin Secretion

In the report of Yang et al,⁶ it was suggested that rosiglitazone amplified 10 mmol/L glucose-induced insulin secretion via a phosphatidylinositol 3-kinase (PI3-K)-dependent pathway. Inhibiting this pathway with the PI3K inhibitor, LY294002, abolished the potentiating effect of rosiglitazone. We previously reported,²⁰ in agreement with other studies,²¹⁻²³ that nanomolar levels of the PI3K inhibitor, wortmannin, amplify glucose-induced secretion, a response that could be duplicated by higher levels of LY294002. Additional studies were conducted using rat islets stimulated with 10 mmol/L glucose alone or 10 mmol/L glucose plus 5 μ mol/L rosiglitazone. For comparative purposes, an additional group of islets was stim-


Fig 2. Effect of rosiglitazone on 6 mmol/L glucose-induced secretion. Two groups of islets were perfused for 30 minutes with 3 mmol/L glucose. For an additional 60 minutes 1 group (○) was stimulated with 6 mmol/L glucose alone (this is the same data as in Fig 1A). The second group (▲) was stimulated for 40 minutes with 6 mmol/L glucose plus 5 μ mol/L rosiglitazone and then perfused for an additional 20 minutes with 6 mmol/L glucose alone.

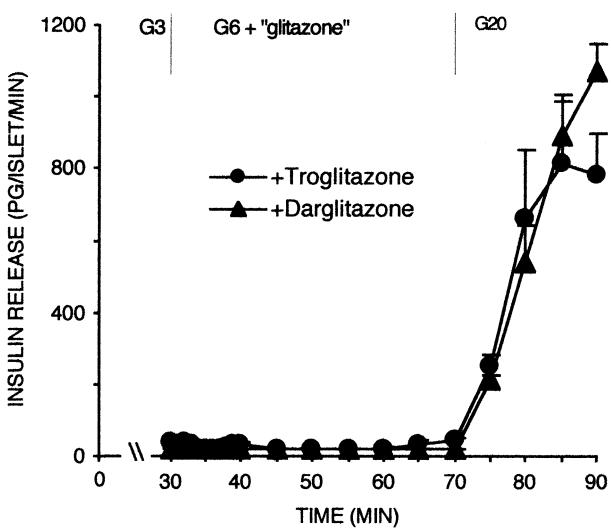
ulated with 10 mmol/L glucose plus 5 μ mol/L nateglinide. As shown in Fig 3, no stimulatory effect of rosiglitazone on 10 mmol/L glucose-induced secretion was noted. In contrast, a strong potentiating effect of nateglinide on 10 mmol/L glucose-induced release was observed (Fig 3). This effect, most dramatic during the initial 30 to 40 minutes of stimulation, waned as the perfusion progressed.


Studies were also conducted with rat islets stimulated with 10 mmol/L glucose plus 50 nmol/L wortmannin or the combination of wortmannin and rosiglitazone. At a level of 50 nmol/L, wortmannin markedly potentiated 10 mmol/L glucose-induced insulin secretion (Fig 4), confirming previous studies.²⁰⁻²⁴ The further addition of 5 μ mol/L rosiglitazone was without any impact on the potentiated response to 10 mmol/L glucose plus wortmannin (Fig 4).

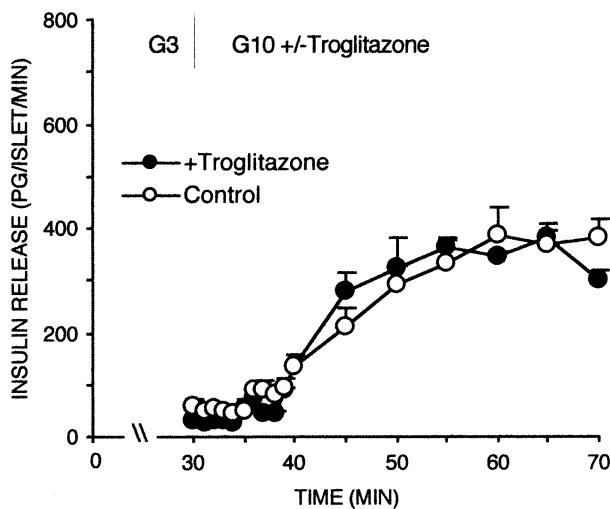
Effects of Troglitazone or Darglitazone on Glucose-Induced Insulin Secretion

Both positive^{25,26} and negative^{27,28} effects of troglitazone have been reported in a variety of preparations, including tumoral cell lines and islets. In light of our negative findings with rosiglitazone, we decided to re-examine troglitazone's effects on insulin secretion in the presence of 6 mmol/L glucose. Concentrations of 1 μ mol/L (data not shown) or 10 μ mol/L troglitazone had no stimulatory effect on insulin secretion from perfused rat islets in the presence of 6 mmol/L glucose (Fig 5). Confirmation of their sensitivity was established by a subsequent perfusion of these islets with 20 mmol/L glucose. Islets that were unresponsive to troglitazone responded with a marked increase in insulin release when

Fig 3. Impact of nateglinide and rosiglitazone on 10 mmol/L glucose-induced insulin release. Groups of 14 to 18 islets were isolated and perfused. For the initial 30 minutes, the islets were maintained with 3 mmol/L glucose (G3) to establish basal and stable insulin secretory rates. For the next 60 minutes (onset indicated by the vertical line), they were stimulated with 10 mmol/L glucose (G10) alone (○), 10 mmol/L glucose plus 5 μ mol/L nateglinide (●), or 10 mmol/L glucose plus 5 μ mol/L rosiglitazone (▲). *Indicates a significant difference between the experimental group and control release in response to 10 mmol/L glucose alone.


Fig 4. Effects of wortmannin and rosiglitazone on 10 mmol/L glucose-induced insulin secretion. Groups of 14 to 18 islets were isolated and perfused. For the initial 30 minutes, the islets were maintained with 3 mmol/L glucose (G3) to establish basal and stable insulin secretory rates. For the next 60 minutes, they were stimulated with 10 mmol/L glucose (G10) alone (○, same data as given in Fig 3), 10 mmol/L glucose plus 50 nmol/L wortmannin (△), or 10 mmol/L glucose plus 50 nmol/L wortmannin plus 5 μ mol/L rosiglitazone (▲).

stimulated with this hexose level. In additional studies using troglitazone, the glucose level was increased to 10 mmol/L. The inclusion of 10 μ mol/L troglitazone together with 10 mmol/L glucose had no effect above that observed with 10 mmol/L glucose alone (Fig 6).


A final series of perfusion studies was conducted with the newer, more potent thiazolidinedione, darglitazone.^{29,30} Similar to the findings made with rosiglitazone and troglitazone, it also failed to stimulate secretion in the presence of 6 mmol/L glucose (Fig 5) or 10 mmol/L glucose (results not shown).

IP Responses to Nateglinide and Rosiglitazone

The calcium-dependent activation of islet PLC, monitored in most studies by the accumulation of IPs,^{13,14,16,31-33} parallels the insulin secretory response to glucose.^{11,12,34} We next assessed the impact of nateglinide and rosiglitazone on IP accumulation in islets whose phosphoinositide pools were labeled with ³H-inositol. Stimulation with 8 mmol/L glucose increased significantly IP accumulation above levels observed in the presence of 3 mmol/L glucose (Table 1). The addition of 5 μ mol/L nateglinide potentiated this response to 8 mmol/L glucose. Blocking calcium influx with the calcium channel antagonist, nitrendipine (1 μ mol/L) reduced IP accumulation to the combination of 8 mmol/L glucose plus 5 μ mol/L nateglinide. Increasing the glucose level to 10 mmol/L was accompanied by a further increase in IP accumulation, and the addition

Fig 5. Effect of troglitazone or darglitazone on 6 mmol/L glucose-induced secretion. Two groups of islets were perfused for 30 minutes with 3 mmol/L glucose. For an additional 40 minutes, 1 group was stimulated with 6 mmol/L glucose plus 10 μ mol/L troglitazone (●). The second group was stimulated for 40 minutes with 6 mmol/L glucose plus 10 μ mol/L darglitazone (▲). Both groups were then perfused for an additional 20 minutes with 20 mmol/L glucose alone. Three experiments were conducted under each condition.

Fig 6. Effect of troglitazone on 10 mmol/L glucose-induced insulin secretion. Two groups of islets were perfused for 30 minutes with 3 mmol/L glucose. For an additional 40 minutes, onset indicated by the vertical line, they were stimulated with 10 mmol/L glucose alone (○) or 10 mmol/L glucose plus 10 μ mol/L troglitazone (●).

of nateglinide potentiated this response as well. On the other hand and consistent with its lack of effect on 10 mmol/L glucose-induced insulin release, 5 μ mol/L rosiglitazone had no additional effect on labeled IP accumulation in isolated islets above that noted with 10 mmol/L glucose alone.

DISCUSSION

Glucose-induced insulin secretion is regulated by a complex interaction between glucose metabolism, a host of second messenger signaling molecules, and by a number of ion channels as well.³⁵⁻³⁷ Failure of these cells to compensate for insulin resistance by augmenting insulin secretion plays a major role in the pathogenesis of type 2 diabetes. Hence, unraveling how these signaling circuits are wired and their interconnections assumes more than passing scientific interest; it is an area replete with important clinical overtones. In the present studies, we focused our attention on 2 widely used clinical compounds utilized to improve glucose homeostasis in glucose intolerant patients. One, nateglinide, positively impacts secretion by affecting the activity of the adenosine triphosphate (ATP)-sensitive potassium channel.³ The other, rosiglitazone, is a PPAR γ agonist⁷ that enhances insulin sensitivity.¹⁰ However, recently it has been reported that it stimulates insulin secretion as well, an action mediated via PI3K activity.⁶ Our goal was to define in more detail the nature of the signaling events that potentially contribute to their insulinotropic effects.

Initially, our attention was directed to nateglinide, one of a class of newly designed, shorter-acting insulin secretagogues.³⁻⁵ That it is a potent glucose-dependent agonist for secretion was readily confirmed. Nateglinide markedly amplified insulin secretion in the presence of 6 mmol/L glucose or higher levels of the hexose. Lowering the glucose level to 3 mmol/L abolished its effect on release. Moreover, blocking

calcium influx into the β cell also abrogated its positive insulin secretory action.

While there is little doubt that the glinide class of compounds modulates the ATP-sensitive K channel,³ additional actions of the nateglinide have to be considered in its insulin stimulatory effect. In the present experiments, nateglinide amplified the activation of islet PLC that normally accompanies glucose-stimulated insulin secretion. This activation process paralleled the potentiated insulin secretory response and, like insulin secretion, was itself reduced by the further addition of nitrendipine. These observations suggests that nateglinide, like tolbutamide and glibenclamide,³⁸⁻⁴⁰ exerts at least part of its insulin stimulatory effect on release through the increased generation of phosphoinositide-derived second messengers. These include both IPs and the protein kinase C activator, diacylglycerol.^{41,42}

We failed to confirm that rosiglitazone potentiates glucose-induced secretion. In the presence of either 6 mmol/L or 10 mmol/L glucose, the same concentrations of hexose used by Yang et al⁶ in studies using the perfused pancreas preparation, the addition of 5 μ mol/L rosiglitazone was without any acute additional impact on the secretory process above that noted to glucose alone. In addition, we could not document any stimulatory effect on glucose-induced secretion from islets acutely stimulated with troglitazone or darglitazone. Previous studies with troglitazone have led to conflicting reports in the literature. For example, Masuda et al²⁵ reported that 1 to 10 μ mol/L troglitazone potentiated 11.1 mmol/L glucose-induced secretion from both statically-incubated rat islets and HIT cells, while 100 μ mol/L inhibited secretion. On the other hand, in the presence of 7 mmol/L glucose, Ohtani et al,²⁶ also using HIT cells, reported no stimulatory effect of 1 μ mol/L troglitazone and a potentiating effect at 100 μ mol/L. In studies with rat islets, Shimabukuro et al²⁷ found no effect of a 48-hour culture

Table 1. IP Responses of Rat Islets to Nateglinide and Rosiglitazone

	IP Accumulation (cpm/40 islets)
1. G3	3,179 \pm 544 (n=4)
2. G8	6,700 \pm 732 (n=6)
3. G8 plus nateglinide	11,785 \pm 1,081 (n=7)
4. G8 plus nateglinide plus nitrendipine	5,036 \pm 552 (n=7)
5. G10	10,032 \pm 1,143 (n=6)
6. G10 plus nateglinide	16,821 \pm 1,529 (n=6)
7. G10 plus rosiglitazone	10,418 \pm 668 (n=4)

NOTE. Groups of rat islets were collagenase isolated. They were then incubated for 3 hours in KRB solution supplemented with 5 mmol/L glucose plus tracer 3 H-inositol (10 μ Ci). After washing with fresh KRB to remove unincorporated label, they were then incubated for 30 minutes with 3 mmol/L (G3), 8 mmol/L (G8), or 10 mmol/L glucose (G10) plus or minus 5 μ mol/L nateglinide, 5 μ mol/L rosiglitazone or 1 μ mol/L nitrendipine as indicated. Also included during the 30-minute stimulatory period was 10 mmol/L LiCl to prevent the dephosphorylation of the IPs. Statistical analyses: line 1 v lines 2 and 5, line 2 v line 3, line 3 v line 4, line 5 v line 6, significant at $P < .05$; line 5 v line 7, not significant.

Abbreviations: IP, inositol phosphate; KRB, Krebs-Ringer bicarbonate.

period with 10 μ mol/L troglitazone on 23 mmol/L glucose-induced release from lean +/+ Zucker diabetic fatty (ZDF) islets. An inhibitory effect of high levels of this compound on 11 mmol/L glucose-induced secretion was reported by Conget and Malaisse.²⁸ We have no adequate explanation for these discrepancies except to note that different preparations, different concentrations, and different methodologies may be contributory factors. Our failure to observe any stimulatory effect of troglitazone, darglitazone, or rosiglitazone on insulin secretion is in accord with the established clinical observations made with this class of compounds. During therapy with them, insulin levels generally decrease.^{8-10,43} Finally, it has most recently been reported that a 24-hour exposure of MIN-6 and INS-1 cells to troglitazone increased glucokinase gene expression.⁴⁴ The functional significance of this observation remains unclear, because insulin secretion from these cells was not determined. In *in vivo* studies, however, 24 hours of treatment of obese rats with rosiglitazone significantly reduces circulating insulin levels,⁴⁵ a finding in accord with many clinical studies.

In the study by Yang et al.,⁶ it was reported that the PI3K inhibitor, LY294002, abolished the stimulatory effect of rosiglitazone on 10 mmol/L glucose-induced insulin release. They concluded that PI3K activation mediated the potentiating effect of rosiglitazone on glucose-induced secretion. Previous studies using rat islets, mouse islets, or MIN-6 cells have demonstrated that the PI3K inhibitors, wortmannin or LY294002, potentiate glucose-induced secretion.^{20-23,46} We conducted additional experiments using the PI3K inhibitor, wortmannin, alone or together with rosiglitazone on islets stimulated with 10 mmol/L glucose. We confirmed what we²⁰ and other groups²¹⁻²³ have previously reported using wortmannin: it is a most effective potentiator of glucose-induced insulin release. This and other observations^{21,47} have been interpreted to support the concept

that insulin signaling in β cells functions normally as a negative feedback inhibitor of the β -cell secretory response, and that PI3K mediates this effect. While it may be argued that wortmannin's action may be mediated by biochemical mechanisms other than PI3K inhibition, one thing remains clear, its impact on release is substantial. From a quantitative perspective, its stimulatory effect is comparable to that observed using traditional potentiators of secretion, such as forskolin, theophylline, or carbachol.^{37,48,49} As shown here as well with 10 mmol/L glucose, the efficacy of 50 nmol/L wortmannin on the insulin secretory process is comparable to 5 μ mol/L nateglinide. The additional inclusion of rosiglitazone to wortmannin-plus glucose-stimulated islets had no effect.

In conclusion, we have confirmed that nateglinide is a potent glucose-dependent insulin secretagogue and documented that under conditions where it amplifies secretion, it also potentiates PLC activation. Both processes are inhibited by blocking calcium influx into the β cell with nitrendipine. We also confirmed that the PI3K inhibitor, wortmannin, like nateglinide, significantly potentiates glucose-induced secretion and that from a quantitative perspective, its stimulatory effect rivals that of other classically used potentiators of secretion. Finally, we failed to confirm the observation that rosiglitazone has any acute positive impact on glucose-induced secretion. While we have no adequate explanation for this failure, we are left to conclude, in agreement with prior clinical studies, that rosiglitazone exerts its actions on peripheral tissues and unlike the sulfonylureas or glinides, it has no acute impact on the insulin secretory process.

ACKNOWLEDGMENT

The constructive discussions and comments of John Cassidy during the course of these studies are gratefully acknowledged.

REFERENCES

1. Loubatieres A, Mariani MM, Chapal J: Insulin secretion as studied on isolated perfused rat pancreas. I. Synergism between glucose and hypoglycemic sulfonamides. *Diabetologia* 6:457-466, 1970
2. Grodsky GM, Epstein GH, Fanska R, et al: Pancreatic action of the sulfonylureas. *Fed Proc* 36:2714-2719, 1977
3. Hu S, Wang S, Fanelli B, et al: Pancreatic β -cell K_{ATP} channel activity and membrane-binding studies with nateglinide: A comparison with sulfonylureas and repaglinide. *J Pharmacol Exp Ther* 293:444-452, 2000
4. Hu S, Wang S, Dunning BE: Glucose-dependent and glucose-sensitizing insulinotropic effect of nateglinide: Comparison to sulfonylureas and repaglinide. *Int J Exp Diabetes Res* 2:63-72, 2001
5. Hu S, Wang S, Dunning BE: Effectiveness of nateglinide on *in vitro* insulin secretion from rat pancreatic islets desensitized to sulfonylureas. *Int J Exp Diabetes Res* 2:73-79, 2001
6. Yang C, Chang T-J, Chang J-C, et al: Rosiglitazone (BRL 49653) enhances insulin secretory response via phosphatidylinositol 3-kinase pathway. *Diabetes* 50:2598-2602, 2001
7. Moller DE: New drug targets for type 2 diabetes and the metabolic syndrome. *Nature* 414:821-827, 2001
8. Falk K, Krssak M, Inzucchi S, et al: Mechanism of troglitazone action in type 2 diabetes. *Diabetes* 49:827-831, 2000
9. Inzucchi SE, Maggs DG, Spollet GR, et al: Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. *N Engl J Med* 338:867-872, 1998
10. Saltiel AR, Olefsky JM: Thiazolidinediones in the treatment of insulin resistance and type II diabetes. *Diabetes* 45:1661-1669, 1996
11. Zawalich WS, Zawalich KC: Phosphoinositide hydrolysis and insulin release from isolated perfused rat islets. Studies with glucose. *Diabetes* 37:1294-1300, 1988
12. Zawalich WS, Zawalich KC: Regulation of insulin secretion by phospholipase C. *Am J Physiol* 271:E409-E416, 1996
13. Best L, Malaisse WJ: Stimulation of phosphoinositide breakdown in pancreatic islets by glucose and carbachol. *Biochem Biophys Res Commun* 116:9-16, 1983
14. Best L, Malaisse WJ: Nutrient and hormone-neurotransmitter stimuli induce hydrolysis of polyphosphoinositides in rat pancreatic islets. *Endocrinology* 115:1820-1831, 1984
15. Albano JDM, Ekins RP, Maritz G, et al: A sensitive, precise radioimmunoassay of serum insulin relying on charcoal separation of bound and free hormone moieties. *Acta Endocrinol* 70:487-509, 1972
16. Berridge MJ, Dawson RMC, Downes CP, et al: Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. *Biochem J* 212:473-482, 1983
17. Zawalich WS, Zawalich KC: Biochemical mechanisms involved in monomethyl succinate-induced insulin secretion. *Endocrinology* 131:649-654, 1992
18. Curry DL: Insulin content and insulinogenesis by the perfused rat pancreas: Effects of long term glucose stimulation. *Endocrinology* 118:170-175, 1986
19. Grodsky GM: A threshold distribution hypothesis for packet

storage of insulin and its mathematical modeling. *J Clin Invest* 51: 2047-2059, 1972

20. Zawalich WS, Zawalich KC: A link between insulin resistance and hyperinsulinemia: Inhibitors of phosphatidylinositol 3-kinase augment glucose-induced insulin secretion from islets of lean, but not obese, rats. *Endocrinology* 141:3287-3295, 2000

21. Eto K, Yamashita T, Tsubamoto Y, et al: Phosphatidylinositol 3-kinase suppresses glucose-stimulated insulin secretion by affecting post-cytosolic $[Ca^{2+}]$ elevation signals. *Diabetes* 51:87-97, 2002

22. Nunoi K, Yasuda K, Tanaka H, et al: Wortmannin, a PI3-kinase inhibitor: Promoting effect on insulin secretion from pancreatic β -cells through a cAMP-dependent pathway. *Biochem Biophys Res Commun* 270:798-805, 2000

23. Hagiwara S, Sakurai T, Tashiro F, et al: An inhibitory role for phosphatidylinositol 3-kinase in insulin secretion from pancreatic B cell line MIN6. *Biochem Biophys Res Commun* 214:51-59, 1995

24. Zawalich WS, Zawalich KC: Effects of glucose, exogenous insulin and carbachol on C-peptide and insulin secretion from isolated perfused rat islets. *J Biol Chem* 277:26233-26237, 2002

25. Masuda K, Okamoto Y, Tsuura Y, et al: Effects of troglitazone (CS-045) on insulin secretion in isolated rat pancreatic islets and HIT cells: An insulinotropic mechanism distinct from glibenclamide. *Diabetologia* 38:24-30, 1995

26. Ohtani K-I, Shimizu H, Sato N, et al: Troglitazone (CS-045) inhibits β -cell proliferation rate following stimulation of insulin secretion in HIT-T 15 cells. *Endocrinology* 139:172-178, 1998

27. Shimabukuro M, Zhou Y-T, Lee Y, et al: Troglitazone lowers islet fat and restores beta cell function of Zucker diabetic fatty rats. *J Biol Chem* 273:3547-3550, 1998

28. Conget I, Malaisse WJ: Inhibition of insulin release by troglitazone. *Med Sci Res* 22:655-656, 1994

29. Oakes ND, Thalen PG, Jacinto SM, et al: Thiazolidinediones increase plasma-adipose tissue FFA exchange and enhance insulin-mediated control of systemic FFA availability. *Diabetes* 50:1158-1165, 2001

30. Camirand A, Marie V, Rabelo R, et al: Thiazolidinediones stimulate uncoupling protein-2 expression in cell lines representing white and brown adipose tissues and skeletal muscle. *Endocrinology* 139:428-431, 1998

31. Berridge MJ, Downes CP, Hanley MR: Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. *Biochem J* 206:587-595, 1982

32. Zawalich WS, Diaz VA, Zawalich KC: Influence of cAMP and calcium on [3H] inositol efflux, inositol phosphate accumulation, and insulin release from isolated rat islets. *Diabetes* 37:1478-1483 [published erratum appears in *Diabetes* 38:3, 1989], 1988

33. Zawalich WS, Diaz VA, Zawalich KC: Cholecystokinin-induced alterations in beta-cell sensitivity. Duration, specificity, and involvement of phosphoinositide metabolism. *Diabetes* 36:1420-1424, 1987

34. Zawalich WS: Multiple effects of increases in phosphoinositide hydrolysis on islets and their relationship to changing patterns of insulin secretion. *Diabetes Res* 13:101-111, 1990

35. Henquin JC, Bozem M, Schmeer W, et al: Distinct mechanisms for two amplification systems of insulin release. *Biochem J* 246:393-399, 1987

36. Rasmussen H, Zawalich KC, Ganesan S, et al: Physiology and pathophysiology of insulin secretion. *Diabetes Care* 13:655-666 (review), 1990

37. Gilon P, Henquin J-C: Mechanisms and physiologic significance of the cholinergic control of pancreatic β -cell function. *Endocr Rev* 22:565-604, 2001

38. Laychock SG: Identification and metabolism of polyphosphoinositides in isolated islets of Langerhans. *Biochem J* 216:101-106, 1983

39. Zawalich WS, Zawalich KC: Induction of memory in rat pancreatic islets by tolbutamide. Dependence on ambient glucose level, calcium, and phosphoinositide hydrolysis. *Diabetes* 37:816-823, 1988

40. Zawalich WS: Glyburide priming of beta cells. Possible involvement of phosphoinositide hydrolysis. *Biochem Pharmacol* 41:807-813, 1991

41. Nishizuka Y: Turnover of inositol phospholipids and signal transduction. *Science* 225:1365-1370, 1985

42. Berridge MJ: Inositol trisphosphate and diacylglycerol: Two interacting second messengers. *Annu Rev Biochem* 56:159-193, 1987

43. Cavanagh MK, Ehrmann DA, Byrne MM, et al: Treatment with the oral antidiabetic agent troglitazone improves β cell responses to glucose in subjects with impaired glucose tolerance. *J Clin Invest* 100:530-537, 1997

44. Kim H, Cha JY, Kim SY, et al: Peroxisomal proliferator-activated receptor- γ upregulates glucokinase gene expression in β -cells. *Diabetes* 51:676-685, 2002

45. Jiang G, Dallas-Yang Q, Li Z, et al: Potentiation of insulin signaling in tissues of Zucker obese rats after acute and long-term treatment with PPAR γ agonists. *Diabetes* 51:2412-2419, 2002

46. Zawalich WS, Tesz GJ, Zawalich KC: Inhibitors of phosphatidylinositol 3-kinase amplify insulin release from islets of lean but not obese mice. *J Endocrinol* 174:247-258, 2002

47. Eto K, Tsubamoto Y, Terauchi Y, et al: Role of IRS-1/2 and PI-3 kinase pathway in the regulation of β -cell mass and glucose-stimulated insulin secretion. *Diabetes* 49:A45, 2000 (abstr)

48. Wieden Keller DE, Sharp GWG: Effects of forskolin on insulin release and cAMP content in rat pancreatic islets. *Endocrinology* 113: 2311-2313, 1983

49. Charles MA, Lawecki J, Pictet R, et al: Insulin secretion. Interrelationships of glucose, cyclic adenosine 3': 5'-monophosphate and calcium. *J Biol Chem* 250:6134-6140, 1975